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We study a hierarchical model of domain walls in a D-dimensional bond disor- 
dered Ising model at low temperatures. Using a renormalization group method 
inspired by the work of Bricmont and Kupiainen for the random field Ising 
model, we prove the existence of rigid interfaces at Iow enough temperatures in 
dimensions D > 3. 
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1. I N T R O D U C T I O N  

The present paper  is devoted to a study of the stability of interfaces in 
r andom media. Such problems may arise in a multi tude of  contexts, a 
prime example being the question of the existence of states describing the 
existence of domain  walls in a dilute Ising model. This model  is defined by 
the Hamil tonian 

H j =  - ~ J~cria j (1.1) 
<0> 

where the sum is over all pairs of nearest neighbors of the lattice Z a, the 
or, are spin variables on the sites of this lattice, taking values ___ 1, and the 
couplings Ju are r andom variables in some probabil i ty space, typically 
chosen as independent and identically distributed. If  the support  of their 
distribution is contained in the positive real line, the Hamil tonian describes 
a ferromagnet  for all possible realizations of the couplings. In this situation, 
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it is easy to show that at sufficiently low temperatures there exist exactly 
two translational-invariant Gibbs states, describing the system with 
positive and negative magnetization, respectively, if the dimension of the 
lattice is at least two. 

In the ordered case, i.e., where all J~ take a constant positive value J, 
Dobrushin ~ has shown that in dimension D ~> 3, and for small enough 
temperatures, there exist also non-translational-invariant Gibbs states, in 
which two regions of positive and negative magnetization are separated by 
a domain wall. Such states can be obtained by applying + boundary condi- 
tions on the upper half of a box A a n d -  boundary conditions on the lower 
half. In finite volume, this ensures that the resulting Gibbs state is charac- 
terized by the presence of an interface separating + a n d -  spins. The ques- 
tion whether the infinite-volume Gibbs state obtained by letting the volume 
of the box A tend to infinity is a pure state describing a domain wall is tied 
to the question whether this interface will be "rigid" (i.e., stay localized 
in a finite region near the equatorial plane) or will undergo unbounded 
fluctuations as the volume of A increases. The latter has been shown to 
be the case in d =  2 by Gallavotti. (9) 

The same question may of course be posed in the disordered case. The 
main new difficulty that enters here is the fact that while previously the 
"flat" surface was clearly the one minimizing the energy, this is generally no 
longer the case. Namely, the energy cost for having two neighboring spins 
of opposite value is now a space-dependent quantity, and the energy of an 
interface no longer depends solely on its surface area, but also explicitly on 
its position. Due to these added complexities, no rigorous results on the 
existence or nonexistence of Dobrushin states in this system are available. 

On the heuristic level, this problem has received a quite considerable 
amount of attention over the last years. In most of these studies, rather 
than regarding the full model (1.1), a more simplified model for an inter- 
face in the presence of bond randomness was introduced. It consists of con- 
sidering a surface S with fixed boundary 0S chosen to be the equator of a 
D-dimensional box. The SOS (solid-on-solid) approximation consists in 
discarding all surfaces with "overhangs," the advantage of this approxima- 
tion being that the remaining surfaces can be described as graphs of a func- 
tion from the equatorial plane to the integers. In other words, an SOS sur- 
face is fully described by giving its "height" above any given point of a 
(d = D -  1)-dimensional lattice. The energy associated to such a surface is 
given by the sum of all the Jo such that the bond (i j )  transpierces the 
surface. A further simplification conventionally used is to set all J0 
corresponding to the parts of the surface perpendicular to the equatorial 
plane equal to a constant (e.g., 1), and to retain randomness only for those 
parallel to this plane. 
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This model has been studied extensively in dimension D = 2 ,  fre- 
quently under the name of "directed polymers." In this situation, numerous 
authors (see, e.g., refs. 11, 12, 15-18) found that fluctuations scale like L 2/3 
with the size of the system, as opposed to the L 1/2 behavior in the ordered 
case. The problem of the interface stability in higher dimensions was 
adressed by a number of authors. (4'12'a9) It transpired that rigidity of the 
interface should be expected in dimension D = 4  and above, but there 
have also been arguments in favor of a critical dimension D = 5. (~2) The 
reasoning presented in ref. 4 invokes an Imry-Ma type argument (13) and 
a mapping to the random-field Ising model, both of which will be discussed 
in some detail below. 

Some more recent results in this context concern fluctuations of 
objects of arbitrary codimension (see, e.g., ref. 10). They concern predic- 
tions on scaling exponents based on results obtained using the "functional 
renormalization group" approach of Fisher. (8/ In the case of directed 
polymers, some interesting rigorous results were obtained by Imbrie and 
Spencer. (14) We will not go into the details of these developments. 

Returning to the central problem of the present work, let us briefly 
recall the arguments for stability in four dimensions presented in ref. 4. The 
main observation was that an interface model of the type described above 
can be represented as a contour model. Le t  F be a collection of oriented 
loops ~ such that either 

o r  

(i) int(7,) c~int(Tj)= 

(ii) int(7i) < int(?s), or int(?fl c int(73 

The orientation a s of a loop indicates whether it represents a step "up" 
or "down." The energy of the corresponding surface is then given in terms 
of F by 

E ( F ) = ~  ]?i] + ~  Jx(H~(F)) (1.2) 
i x 

where Hx(F) is naturally the height of the surface at site x, i.e., 

Hx(F) = ~ a~i (1.3) 
i : x  ~ i n t  (y , )  

In ref. 4 it was argued that the Hamiltonian (1.2) strongly resembles 
an Ising model in a random magnetic field in dimension d =  D - 1. For  the 
latter model has by now been proven rigorously (1'5) that the lower critical 
dimension, i.e., the dimension above which a phase transition takes place, 
equals two, which then suggests that in the interface model the critical 
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dimension should be three. The same result is obtained by a simple 
Imry-Ma type argumentt131: Suppose we want to form a large contour 7. 
Obviously, there is a price in energy to be paid for building the wall, which 
equals 17[. This will suppress contours in dimension above two, unless we 
gain some energy from the fact that the location of the ceiling has been 
changed. The amount of energy that we may expect to gain is of the order 
of the fluctuations of the random variable ~ i ~ t ( ~  Jx(H), which by the 
central limit theorem will be of the order [int(7)l ~/2. For a contour of 
sufficiently regular shape and linear dimension L, this is of order L d/z, 
while the surface energy is of order L d- 1. Thus, for d >  2, the bulk term is 
negligible compared to the surface term, and thus no large contours will 
form, while in d =  2 the two terms are comparable, and large deviations 
of the bulk energy will in fact delocalize the interface. 

To make the argument above rigorous, it seems natural to adopt the 
method used by Bricmont and Kupiainen (5/ in the random field model to 
the present situation. In the present paper we undertake the first step of 
this endeavor by proving .the rigidity of the interface in d > 2 dimensions 
for a hierarchical version of the above model. While this is putting aside 
the geometrical complexities associated with the renormalization of 
contour models (cluster expansions, etc.), it will allow us to elucidate the 
probabilistic aspects of the renormalization of the random variables Jx(H). 
In fact, it is this probabilistic part in which the main differences between 
the random field and the interface model arise: in the RFI model, we have 
to deal with the renormalization of just one random variable, the magnetic 
field, for each site x, while in the interface model, with each site there is 
associated an infinite family of random variables J~(H), which, even if 
initially independent, will rapidly enter into interaction with each other. 
The extension of these results to the full model described in (1.2), (1.3) is 
under way. (2) 

Let us describe the hierarchical model we will study. We consider a 
d-dimensional square of side length LN; we divide it into L d blocks of side 
length L" 1, each of which is subdivided again into L a blocks of side 
length L N-z, and so on, until we arive at blocks of side length one. We 
refer to the blocks of side length L ~ as the nth hierarchy. The blocks of the 
nth hierarchy will be labeled by the set 

Y.= {ylyi= - U '  " + l  ..... L N - " - I }  (1.4) 

where Yi denotes the ith component of the vector y. We denote by L -  ~ the 
map from Yn to Yn+l such that L-lyi=Int(yi/L), i.e., the map that 
associates with y E Yn its block in the next hierarchy. We also denote, for 
y E Yn + ~, by Ly the collection of sites x e Yn such that L ~x = y. 
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Our surfaces will now be obtained by constructing towers above each 
block of each hierarchy. We denote by hy, for y ~  Y,,, the height of the 
tower above the block y in the nth hirarchy. Obviously the height of the 
surface so obtained at site x, H~, is then given by the sum of the heights 
of the towers that contain x, i.e., 

N 
N /-/x- Z (1.5) 

n - - 0  

We will, for technical reasons, restrict the heights to take values 
between - l  and l and we will denote by A this set of allowed values. Our 
final bounds will be uniform in l and thus allow us to take l to infinity at 
the end. 

The energy of a surface obtained in this manner will be given by 
N 

E({h} )=  Z ~ ]h(y")l L(a i),+ Z Jx(HN) (1.6) 
n = 0  y e  Yn x ~  YO 

The partition function ZN(fl, J) is then given by 

ZN(fl, J ) =  Z e ae({h}l (1.7) 

The corresponding finite-volume Gibbs measures will be denoted by t~N,~,s. 
The mean height of the interface in the thermodynamic limit m(/?, J) is 
given by 

m(fl, J ) =  lim #N,B,j(H N) (1.8) 
N ~ o o  

We will assume that the Jx(H) are random variables such that: 

(i) All Jx(H) are equally distributed. 

(ii) Jx(H) and Jx,(H') are independent, if x-Cx'. 
(iii) P(IJx(H)I >6)~e -~2/2~2, for all 6~>e. 

Remark 1. Note that we do not assume that the Jx(H) are inde- 
pendent for different values of H. As we will see, such an assumption would 
be of no advantage for our proof, since in the renormalization process an 
initial independence will be destroyed rather quickly. As an aside for 
readers familiar with the functional renormalization group approach, (s) we 
may note that the fixpoints found by this method also do not correspond 
to independent random variables. From the point of view of applications, 
it is also advantageous to be able to avoid such an assumption, which may 
not correspond to the physical reality (one may think, for instance, of the 
problem of fluctuations of Peierls contours in a spin glass(3)). 

We may now announce the main result of this paper: 
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T h e o r e m  1.1. Let d > 2 ,  and assume that Jx(H) is given as 
described above. Then there exist Lo, rio, and eo finite, such that for all 
L >>. Lo, fl >~ flo, and g~eo,  

P(Im(fl, J)t > 6) <. e 62/292 (1.9) 

for all 5 ~> e, where g is of the order of e. 

Remark 2. We expect the theorem to hold with Lo = 2; however, for 
technical reasons we have to choose L somewhat large. 

Remark 3. The theorem implies that the interface is stable in the 
sense that we know, at a given site x, where to find it (namely at height 
zero!). It does not imply, however, that in the thermodynamic limit the 
height of the interface is everywhere bounded! On the contrary, we must 
expect that on a typical configuration towers of arbitrary height will occur 
"somewhere." However, the average distances between towers of height h 
will be of the order eh2/2(d-l)~2; furthermore, the highest towers will most 
likely be very thin, i.e., belong to the zeroth hierarchy, and towers of the 
nth hierarchy of height h will be separated by distances e a2/a(d 1)~2,, where 
~, decreases exponentially with n. 

Remark 4. In d = 2  the interface is expected to become unstable, 
since the variances of the random variables (') Jx (H) do not converge to 
zero. A detailed analysis of this situation will be presented elsewhere. (6) 

The remainder of this paper is organized as follows. In Section 2 we 
derive the renormalization group equations for our model and the resulting 
formulas for m(fi, J). In Section 3 we control the flow of the renormaliza- 
tion group in the limit fl = m and prove the corresponding special case of 
Theorem 1.1. In Section 4 we complete the proof of the theorem for/3 finite. 

2. THE RENORMALIZATION GROUP TRANSFORMATION 

The structure of the hierarchical model invites and facilitates the 
evaluation of the partition function (2.7) by a successive summation over 
the different hierarchies of towers. That is, 

Z N ( f l ' J ) =  2 "'" Z exp - f l  ~ 2 ]h(s L(d 1>, 
(N) {by ~ {h~r')} , = I y~ 

Ihx I + J x ( g ~ )  
{h~)} 

= 2 "'" Y', exp - f i  2 2 Ih~,'. )1L(d-1)n 
{h~ N)} {h~, 1)} n = 1 Yn 

, h }O) :x~Ly l  x ~ L y l  

(2.1) 
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where / ly  = Z,,N= 1 h~n 1. Thus, 

h( ) h~,N 1 ) ) 

= Z  u ,(j~('), Y) 

i j} 1) ~ lh!vnn)l L ( d - 1 ) n  ~_ ~ L(H~ ,) 
- r t  = 0 v 

(2.2) 

where 

.Ty(H)-flLdll ~ In exp{-~[lhJ+J~(H+h~)]} (2.3) 
x ~ Ly 

and 

/~(l) =/~L d 1 (2.4) 

The following lemma assures that our procedure will make sense: 

L e m m a  2.1. Suppose the J,(h) are identically distributed random 
variables, independent for different values of x (but not necessarily for 
different values of h !!) that satisfy 

(a) F_(J~(h)) = 0 
(b) P(/Jx(h)l > 6 )<  e -a2/2~2, for all 5 large enough 

Then the sum 

e_J3Eihl + J~(H + h) ] 

h --oo 

converges almost surely, and the Jy(H) are well-defined, almost surely 
bounded, random variables with identical distributions, independent for 
different y. 

ProoL Let us show first that the sums converge. Obviously, they may 
diverge only if, for infinitely many values of h, 

e~[rhl + Jx( H + h ) ] ~ o~--~ Ihl/2 

On the other hand, we have by assumption that 

P(Jx(H+h)<-Ihl/2)< ~ e Ihl2/8~2<~ (2.5) 
h ~ - - o o  h =  

and therefore, by the Borel-Cantelli lemma, 

P((Jz(H+h)<-lhl/2i.o.)=O a.s. (2.6) 
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Moreover, the sum is almost surely strictly positive, its logarithm thus 
defined, and Jy(H), being a finite sum of such terms, is thus a well-defined 
random variable. The fact that its distribution is independent of H follows 
immediately from the inductive assumption. II 

The fact that the Y are identically distributed will allow us to remove 
their common mean and thus obtain new variables 

J!vl)(H) - Yy(H) - ~:Jo(0) (2.7) 

which have all the properties of the original Jx(h), except of course that we 
have not yet proven the exponential bounds (b) for its distribution, the 
derivation of which will constitute our main task. In terms of these new 
variables, the recursion (2.2) takes now the form 

Zu(fl, J )= exp{L a(u- ')EJo(0) } Z N 1(/~ (I), j (1))  (2.8) 

This process can now be iterated to yield the following general set of 
recursive equations: 

ZN( fi, J) ---- exp Ld(U-k)EJ(o k- 1)(0) Zu_ . ( f l  (n), J(')) (2.9) 
k 1 

f l ( n )  = L ( d  1)nil (2.10) 

J~')(H)= X In exp{ - f l ( ' - l ) [ Ihx l+J~  ~ 1)(H+hD] } 
x ~ L y  

E J) + ~  ~ ~ In ~ e x p { - f l  (~ 1)[Ih~l+J!~ ~)(g+h~)]} 
x ~ L y  hx 

(2.11) 
We may use these recursion relations to obtain a formula for the mean 

height. We have 

1 

n=O Yn n=O 
U 1 

xexp - f l ( ' )  ~ 2 Ih~ ) ]L(d l)(k-n)q_ Z 
k ~ n  Yk X ~  Yn 

(2.i2) 
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Here we have performed the sum over the first n -  1 hierarchies in the term 
involving hr "/. Performing now the summation over the nth hierarchy, we 
note that only the sum over hr "I differs from the previous construction. One 
thus verifies easily that 

f N 1 E "'" E exp _fl~,o y, E [h~y~)l L(d-~'(k-~' 

+ ~ J x ( n x  ) lh~o')l 
x~ Yn 

1 
= Z N  n l ( f l (n+J) ,  J " + l )  E "'" E (h~')) ,~(H~ n l ) 

{h~yl} I.+~l {by } 

f N xexp -fl(~+ ~' 2 Z Ih~y~'l L(d-1)(k n 1)_~_ E 
k = n + l  Yk xff Yn+l 

j x ( H  u ,, 1)} 

(2.13) 

where 

l r  (2.14) (hr (H i n 1 ) _ E h  (exp{-fl(")Elh[ + o o  ,--o 
[(n)[  T_[N n - ~  Zhexp{-f l (") [ Ih]  +~o  ~--o + h ) ] }  

Notice that while (h(o"))n depends o n  H N n 1, its distribution is inde- 
pendent of it and depends only on the distribution of the J(~')(H). 

Continuing to sum over the hierarchies as before, we obtain finally 
that 

N 
N _< #N.,,j(Ho)..~ ~ ( h ~ ) ) u  (2.15) 

n=O 

where for m >n,  (h(o'~ is defined recursively as 

<h~o">m (H~ -m-  ') 

Y~h (exp{-f l(m)[th[ ~- r(m)r m 1 --~0 , " 0  +h)]})(h~o.)>m ~(H N m ' + h )  
__ I ( m ) [ M N - -  m -- 1 ~2hexp{ fi(m)[]hl+~o ,--o + h ) ] }  

(2.16) 

This sets up our formalism. The proof of Theorem 1.1 will now consist 
of two steps: First we set up control of the random variables J~'~ We 
will show that, for d > 2 ,  the (n) Jy (H)  satisfy bounds of the form 

P([JCy')(H)I > 6) < e a2/2d, 
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where the e~ converge to zero exponentially fast. This result will then be 
used together with formulas (2.14)-(2.16) to prove the theorem. 

In the next section we will do this first in the limit/7 --+ ~ ,  where the 
sums over h will be seen to be governed by just one term. The general case 
will be treated in Section 4. 

3. THE CASE [3=oo 

For fl large, the sums over h appearing in the recursive definitions of 
the variables (~) Jy (H) are clearly dominated by the terms for which 
- []h] +J~(H+h)] takes on its maximal value, and in the l imit/7= ~ this 
becomes an exact relation, as the following lemma shows. 

L e m m a  3.1. Under the assumptions of Lemma 2.1, 

lim flLd_ 1 2 in exp{-fl[Ih~l+J.,(H+hx)]} 
f l ~  .r ~ L y  

1 
- L  d 1 ~ inf[}h~l+Jx(g+hx)]h a.s. (3.1) 

x c L y  

The proof of this lemma is left as an exercise. 
Lemma 3.1 invites us to study the following simplified system of 

recursions: 

1 (n) Jy (H)-Ld_t ~ {inf[ thl+J(~ n , ,  t l ( H + h ) ]  
x ~ L y  

- ~ inf [Phi + j (n-X)(H+ h)] } (3.2) 
h 

Remark. We present the analysis of this particular limit for two 
reasons: First, the estimates are considerably easier and more transparent. 
Second, we want to emphasize the point that all relevant contributions that 
might destabilize the interface are already present here, and that finite- 
temperature effects only produce negligible corrections. 

Proposition 3.1. Let Jx(H) satisfy the assumptions introduced in 
Section 1. Then, if L is sufficiently large and e small enough, the random 
variables J~n)(H) defined through (3.2) are identically distributed random 

(n) variables, independent for different x, 7_J x (H)= O, and 

P(J~'~(H) > 6) ~< e a2/2+~ 

P(J~n~(H) < - 6 )  ~< e a2/2~ (3.3) 
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for all ~ > e,, and 

e~ = c"e 2 (3.4) 

with c < 1 a constant depending on L and d. 

Proof. The proof of the proposition proceeds by induction over n. 
We will thus assume (3.3) to hold for n - 1 and use this to prove them for 

(n) J v (H). To do so, we study first the variables 

Ix(H) =inf  [Ihl + J ~  l l ( H + h ) ]  (3.5) 
h 

Clearly, the !~(H) are all identically distributed and independent for 
different x. Moreover, it is obvious that for c5 > 0, 

P(I~(H) > a) ~< P(J}~"-1)(m) > 6) (3.6) 

simply since the inf is certainly not bigger than the particular term with 
h = 0 .  

The more difficult part is thus to estimate P ( I x ( H ) <  -6 ) .  However, 
since, by assumption, J}" II(H) has a very small probability to take on a 
large negative value, we may expect that the inf will typically occur for 
h = 0, which would give a bound like (3.6), while all other possibilities 
together just give a contribution of similar size. To make this idea precise, 
we write 

P(/~(H) < - 6 )  

r~ b ~ oo  

x P ( i n f [ l h l + J ~ n  i ) ( H + h ) ] < _ ~ l V h j ( , - l ~ ( H + h ) e [ n h _ l ,  nh]) 
h 

x P(ghJ~" X)(H+h)e  [ n h -  1, nh]) (3.7) 

Working with the conditional probabilities gives us a better control over 
the infimum; in particular, we may arrange the summation over the n h in 
such a way as to make explicit the minimal value that Ih! +nh takes on: 

P(/~(H) < -~5) 

m =  ~o n h : l h l + n h < ~ - - m  

x P ( i n f [ [ h [ + J ~ n - ~ ) ( H + h ) ] < - 6 ] V h J ( x  n l ) ( H + h ) ~ [ n  h -  
h 

x P(gh j (n-1) (H + h)e  [ n h -  1, nh]) 

1, nh]) 

(3.S) 
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It is understood that in the sum over the nh, equality has to hold at least 
for one h. Note further that, given the conditions, the inf is necessarily 
taken among exactly those h for which Ihl + n~ = - m .  It is thus useful to 
make the set X of those h for which this equality holds explicit. This yields 

P(/~(H) < - 6 )  

m =  o~ X n h : l h [ + n h = - - m ,  h e X  
[h[ + n h >  --rn, h ~ X 

x P( inf [-Ihl + J(x n 1)(H+ h)] < -61Vh J~x'-~)(H+ h) ~ [n~ - 1, nh]) 
h ~ X  

xP(VhJ(x " 1 ) ( H + h ) ~ [ n  h - l , n h ]  ) (3.9) 

Notice that by now the event under consideration depends only on the 
variables J ~ ' - ~ ) ( H +  h) with h e X; we may thus sum over all the other nh, 
and, neglecting the restrictions on their range, get the upper bound 

P( /~(H) < - a )  

m =  oo X 

x P( in f  [Iht +J~x'-')(g+h)] < --61VhexJ!~'-l)(g+h) 
h E X  

~ l - - m -  I h l -  1, - m -  Ihl])  

xP(Vh~xJ2" ~ ) (H+h)~[ -m-[h l - l ,  l m - l h l ] )  (3.10) 

In the summation over all subsets X we can fix the maximal value of [hr. 
Then, 

P(L(H)  < - a )  

~< 
m =  co R = O  X : m a x h e x l h l = R  

x P( inf  [thl +J(x'-~)(H+h)] < -6lVh~xJ(x'-l)(g+h) 
h e X  

~ [ - m - t h l - 1 , - m -  Ihl]) 

xP(ghCxJ}{ ~ ) ( g + h ) ~ [ - m - l h t - 1 , - m - l h l ] )  
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= ~, p(j(n , l(H)<_a[gh~xj~n-~)(H)6[_m_l,_m]) 
m =  - - o o  

• P(J(x" I)(H) ~ [ - - - m -  1, - -m])  

+ Z Y Z 
m = - - m  R = I X .  m a x h ~ X  [ h i  = R 

x P( inf  [-]hi +J(x"-l)(H+h)] < -6[Vh,xJ~" 1)(H+h) 
h e X  

e [ - m - I h l - 1 , - m -  Ihl]) 

• -m- th l ] )  (3.11) 

The first term is simply P ( J ! ~ - i ) ( H ) <  -(5); to estimate the second, 
notice that 

P( inf  [-[hl+J(x " *)(H+h)]<--(SlVhexJ( 'x  ' 1)(H+h) 
h e X  

~ [ - - m -  I h l -  1, -m- lh l ] )  

= {0 if m + l < 6  (3.12) 
4 1  if m + l > ~ a  

and that 

P(Vh~x J(~"-~>(H+ h)~ [ - m -  Ihl- 1, - m -  Ihl ]) 

<~ P(J(x"-I)(H+R)6 [ - m - R -  1, - m - R ] )  

[ (" + 
< exp 2e2 i J (3.13) 

Together with the obvious fact that the sum over the subsets of heights 
such that the modulus of the maximal height equals R extends over no 
more than 4 R terms, this allows us to get the final bound 

+ ~ ~ 4Rexp ~ - - -  P(/~(/-/)< -6)~<exp 2e~-1 m>a 1 R ~  2e~_~ J 

~<C'exp 2e~ 1/ ~<exp 2~-_1 (3.14) 

where C' is a constant that can be choosen, e.g., to equal 6, provided e~ ~ 
is sufficiently large, and 6 >~ c, and 

,[1+o(%] 
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Notice that the bounds thus obtained for Ix(H ) imply that its mean is 
exponentially small, and therefore virtually the same bounds hold for 

L ( H )  - / ~ ( H )  - EIx(O) 

Thus, we are almost done: the J(y")(H) are sums of the (independent!) 
random variables with mean zero satisfying the exponential bounds (3.14), 
and what is left is to extract the corresponding bounds for the sums. To do 
so, the following lemma is useful: 

k e m m a  3.2. Let X be a random variable such that 

(i) ~X= 0 
(ii) P (X>6)~<e  62/2~2and P (X<-c~)~<e  62/2~2. 

Then, the Laplace transform r 'x, satisfies, for t > 0, the bound 

~_e t x  ~ e ce2t2 (3.15) 

where c is a universal numerical constant (independent of t and e) order 
unity. 

Proof. To prove the 1emma, we use the fact that 

i x2 + x +-~- if x~<O 

e x ~< x 2 
+ x + ~ e  x if x~>O 

(3.16) 

Let first t ~  e. Then, by (3.16), 

1 2 2 l 2 2 tX Ee'X= 1 + 5f_(t X Zx<~o) + gE(t X e 7.x>~o) 

<~ exp[ �89 tz(~-t2X2)~x <~ o + ~_t2X2etXzx >~o) ] (3.17) 

We just need to estimate the two expectations in the exponential. Note that 

EX2zx<~o = ~ E(X 2 ] -  e ( n + l ) < X ~ < - e n ) P ( - e ( n + l ) < X ~ < - e n )  
n = O  

~<~2 ~, (n+  1)2e n 2 / 2 = C l e 2  (3.18) 
n = O  
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and similarly 

~-X2e'X)~x>~o= ~ ~_(X2etZlen<~X<e(n+ 1)) P(en<<.X<e(n+ 1)) 
I I = 0  

<~E 2 ~ (n+ l)2 eI"+l)-"2/2=Cze2 (3.19) 
n = O  

where the last inequality made use of the assumption te <~ 1. 
For larger t, we must proceed in a slightly different way: 

Y-e rx= ~ ~-(e'Xle(n-1)<~X<~n)P(e(n-1)<<.X<en) 
n =  --oo 

= ~ E(e~Xl- e(n+ 1)~<X< -en) P ( - e ( n +  1)~<X< -en )  
n = O  

+ ~ ~_(e'X[en<~X<e(n+ 1)) P(en<~X<e(n+ 1)) 
n ~ O  

<~ ~ (e "'~ ,2/2 +e(,+l)~ ,2/2) (3.20) 
n = 0  

Taking into account the fact that now te>~ 1, the latter sum is easily 
bounded by 

~-e 'x ~ e c3'2~2 (3.21) 

Combining these results and selecting the worst constant as e, we arrive at 
(3.15) and have proven the lemma. | 

With the above bound on the Laplace transform of I, we now get 
immediately a bound on the Laplace transform of J~,(')(H)." 

x ~  L y  

( 1) = I-[ n- exp /~(H) 
x e L y  

~< e c'2d-~ L2- ~ = ed~:/2 (3.22) 

2_ 2 1 c L 2 - - d .  Clearly, from (3.22) the exponential bounds (3.4) with e, - e ,_ 
follow with n - 1  replaced by n. Notice that e, is smaller than e,_~, 
provided only d > 2  and L is chosen big enough such that cL 2 d< 1. This 
proves the proposition. | 

822/62/1-2-13 
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We are now ready to prove Theorem 2.1 for the particular case fl = m. 
To do this, we need to control P((h(0"~)N). Notice that, by the same 
reasoning used in the estimations for J(xm(H), we have 

P((h~0"~)l (H) > 3) 

m = 0  X n h : l h [ + n h = - - m  

• p ( l imZh~X (exp{-/3r +J(oi'(H+h)] })(h(o "~ >z-i (H--~- h) > 

Y',h ~ x exp{ --fl(i)[Ihl + J(oi)(H+h)] } 6 

Vh~x--m--5< Ihl + Jg)(H + h)<~ -m + 

( , ,) x P  Vh~x--rn--~ <lh[+ J(o~ -m+-~ 

--1 

+ 2 2  2 
m =  ov X n h : l h l + n h = - - r n  

[/ lim 2h~x(exp{--~('~[lhl + Jr176 })('h~)~-i (H+ 
x P \ ~  y~h~xexp{_[3(O[ih [ +j~o~(H+h)] } h)>6 

1 ,) 
Vh~x-- m -- 5 < thl + J~o~)(g + h) <~ -m + ~; JCo~ >~ -m - 

• P V h ~ x - m - ~ <  Ihl +J(oi~(H+h)<~ -m+~;Jg~(H)>~ -m-~ 
~< P((h(o~l)~_x ( g ) > 6 )  

+ ~ ~ 4RP(max(h(on))i-l(H+h)>6)exp[- (R+m-1/2)2~~ | 

1 

+ y' ~, 4RP( max (hr (H+h)>~i)  
Ilhl + rnl ~< R m = - - c o  R = O  

r + 1/2)2~'~ 
x max (exp ( -  ~--~,2)' exp I 2e~ JJ  (3.23) 

Not ice  that in the sum over the negative m we have retained the 
condit ion that the m i n i m u m  was not  attained for h = 0 .  Bounding the 
probability of the m a x i m u m  by the sum over the probabilities, we arrive 
at the bound 

P((h(om)~(H)>6)~P((h~o'))~_ ~ (H)> 6)(1 +ce -~/Sd) (3.24) 



Stab i l i t y  of  In ter faces in a Random Env i ronment  193 

Iterating this bound yields clearly 

I 2 P((h(o'~)N>6)<..P((h(o~l),(O)>6)(l+ce-~/8~~ ) (3.25) 

so that we are left with bounding P((h(o~)), (0)> 6). This is done exactly 
as above, and yields 

P((h(o'))~ (0) > 6) <~ ce '52/2e2 (3.26) 

which can be summed over n to yield the bound claimed in Theorem 1.1. 

4. T H E  C A S E  [3 F I N I T E  

In this section we complete the proof of our main theorem by 
establishing control on the renormalization group flow for fl large, but 
finite. In view of our discussion in the foregoing section, all we need is the 
following lemma. 

I . emma 4.1. Let J(h) be a family of identically distributed random 
variables, satisfying the bounds 

P(J(h) > 6) ~< e ~2/2~2 (4.1) 

P(J(h) < - 6 )  ~< e a2/2~2 (4.2) 

~ r 6 > e .  
Let 

1 
I ( H )  = ~ log ~ e-/~Elh4 + s~/~+ h)? (4.3) 

h ~ A  

Then there exist eo > 0 and rio < ov such that for all e < eo and/3 > rio, 

P(I(H) > 6) ~< e a2/2~2c (4.4) 

P(I(H) < - 6 )  ~< e a2/2~2 (4.5) 

where c is a numerical constant (of order unity), independent of e and/3. 

ProoL Using that 

1 ~log ~ e '6[Ihl+J(H+h)])-J(H) 
h~A 

we get immediatly 

P ( ~ l o g  ~ e-~['~'+s(H+h)l<--6)<.P(--J(H)<--6)<...e -a2/2~2 (4.6) 
h ~ A  
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which proves (4.5). The more difficult part is to prove (4.4). Although the 
basic idea is the same as the one used in the last section, there appear some 
more technicalities and we will provide some notation to deal with this. 
First, we introduce the following partition of the probability space of the 
J(h): For a given positive integer l, we divide the interval A into l disjoint 
subsets X1, J ( 2 , ' " ,  X l "  Assign a strictly decreasing sequence of integers 
ml > m2 > ... > ml, and denote by A(Xi) the event 

{Vh~x,--mi-- 1 < J(H + h) + ]hi ~< -m,}  

Note that A(X,) depends also on m~. Let, furthermore, )( denote the 
collection )?=  (X1 ..... 2-l) and put 

1 

A(2) - (~ A(X,) 
i = 1  

The events A(J() provide us with the following partition of unity: 

1 = ~ Z Z* ~{A(X/} (4.7) 
/ = 1  m l > m 2 >  . . .  >ml X I . . . . , X /  

where the star in * Zx~,,xt recalls that the sum is over subsets Xi subject to 
the restrictions that X, c~ Xj = ~ and U ~_ 1 Xi = A. 

Let us further introduce 

Z(Xi )=  ~ e -/~Elhl+J(~+h/~ (4.8) 
h~X~ 

and set 

1 
~b(Yi) = ~ log Z(X,) (4.9) 

For any given partition we may thus write 

I ( H ) =  log E Z(Xi) 
i = l .  

=~b(X,)+~log 1 + . =  Z(X1)J 

Using (4.7), we may now write 

P(I(H)>6)= ~ 2 2* P(I(H)>51A(2))P(A(X)) (4.11) 
l = i  m l > m 2 >  - - .  >ml Xl,...,XI 
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Notice that conditioned by A(J() we may expect I(H) in (4.11) to be 
dominated by ~b(X1). In fact, on A(J() we have the following bounds: 

and 

1 1 
ml +-slog IXll ~ ~(X,) ~ 1 +m 1 +-; log ]X~] 

P P 
(4.12) 

1 ( ' z(xi)~.<L ' 
~log 1+ ~2Z---~)/-.~ fl Z Z(X~)e ~'~ (4.13) 

i = 2  

It will turn out to be necessary to treat separately the parts of the sum 
(4.11) in which m~ ~>0 and ml <0, respectively. Put 

S+ = f 2 + 2* P(I(H)>61A(2)) P(A(X)) (4.14) 
l = 1  m l > r n 2 )  . .  > m  l X I , . . . , X  l 

and 

S- = f ~ - 2" P(I(H)>61A()()) P(A()()) (4.15) 
l = 1  m l ; > m 2 >  . . ,  > N I  l X I , . . , , X  l 

The + superscripts on the sum over the mi recall that it extends over 
positive or negative ml, respectively. 

We will consider first S +, which naturally is expected to give the main 
contribution. Let us write, for some 0 < a <  1 to be chosen later (e.g., 

= 1/2 will turn out to be a possible, but maybe not optimal, choice), 

6= f 6~i-l(1-c~) 
t = l  

and notice that, since ZI=j 6~ 1( 1 - ~ ) < 6 ,  

P(t(H) > 6 F A(2)) 

( ~,lf Z(Xl-----~ >z(x~) ' ) ~< P ~b(X1)+-~ Z 3 ~ ' - I ( I - ~ )  A(X) 
i = 2  i = 1  

~< P(@(X,) > 6(1 - ~) I A()?)) 

+ f p z(x,)>6~'-'(l- A(2) (4.16) 
i = 2  

We consider the first term in (4.16) separately: 

S~ + - f 2 -  2*  P(~b(X~)>6(1-cQIA(X)) P(A(X)) 
l =  1 m I > m 2 >  . . .  > m I X I , . . . , X  l 

<<- Z 2 P((~(X1)>6(1--~)IA(XI))P(A(X1)) (4.17) 
ml~>0 X I ~ A  
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where we have summed over those conditions upon which the event under 
consideration does not depend. The estimation of (4.16) is now very similar 
to that of Eq. (3.10) of the last section. We have 

s -2 Z 
m l ~ > 0  R = O  X l : m a x h c x l l h ! = R  

~< P ( - J ( H )  > 3(I - e) )  

+E 2 2 
m l > ~ 0  R = I  X l : m a x h a X l  ]HI = R  

Using (4.12), we have 

P({b(X,) > 6(1 - a)I A(X, )) = 0 

Therefore, as in (3.14), 

S~- ~< P ( - J ( H )  > 3(1 - ~))  

R = I  m l  > 5(1 : Q - - l - ( 1 / f l ) l o g ( 2 R + l ) "  

P((~(X1) > 6(1 -- a) I A(XI)) P(A(X1)) 

P(~b(X, ) > 5(1 - c01A(XI )) P(A(Xt )) 

(4.18) 

1 
if (1 -4-ml)+-~ log I&l 46(1 - ~ )  

p 

4 R exp ~- (ml + R) 2] 
L 2s J 

~<exp[ 32(1-c0212~ 2 j + C e x p { -  [5(1--cO--l~ 2 (4.19) 

We consider now the second term on the right-hand side of (4.16), 

l =  1 m I > m 2 >  ".. > m l  XI ,  ..,Xt l = 2  

x p  Z ( j f [ ) > & i  1 (1 -~)  A(2) P(A(2))  

- if z + z* 
t = 2  l = i  mt > m 2 >  " "  > m !  X h . . . , X  [ 

(,_z(x,) ) 
x P \BZ(XI)>&' 1(1-c~) A(2) P(A(2))  

i = 2  m t ~ > 0  mr<~rnl i ~- i XIC~Xz= ~ 

x P \[1{1 Z(x,Z(X')) > &d-  t( 1 - e )  A(X,)c~A(X,)) 

x P(A (X,) m A(XJ) (4.20) 
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Using (4.14), we have on A(J(1)m A(Xi) 

1 Z(Xi) .<1 IX, I e e('''+ l-m*) 

Therefore 
(1 z(x,) _ ~) ) 

P \f l  Z(X1) > &d- ~(1 A(X~)c~A(Xe) = 0  

if (1/fl)IX~I e B(m~ + 1-ml)< 00~i 1(1 --~). Using this, we obtain finally 

i = 2  ml>~O rn,<~ml--i+l ]X~l>flfcd l(1 ~)exp[fl(ml--m ~ 1)] 

i = 2  ml>~O m~Gml--i+l R>([3/2)c~'-t(1--~)exp[3(ml m~-- l ) ]  

x 4 R exp[ - (mz + R)2/2g 2] 
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(4.21) 

l = l  r n l > m 2 >  .-- >m I XI,...,XI 

X P  Z(XI------~>(~-- l o g t X l l - m  I A(Jf) P(A()()) (4.23) 
i = 2  

We decompose the sum ~xL,.,x~ into Y.* and Z*,  where Y'.~ is over 
X~,..., X t with the condition that pxl[ ~< e ~(a-m*)/2 and Z *  is over X1 ..... Xt 

We now turn to the remaining term, S -  [see (4.15)]. Using (4.10) and 
(4.13), we get 

C ~ E E 236a'-I(1-~)exp[3(ml-m, 1)] 

i = 2  ml>~0 m~<.rnl--i+l 

• exp { - {m' q- (fl/2) ~~ l(1-~ exp[fl(ml - mi -1 ) ]  

C' ~ E E 23a~'-1(1 ~)exp[3(A-l)] 
i = 2  ml>~O d~>i - -1  

-.~ -<c'"exp{ -[(fl/2)g)~i ~ 2e 21(1 - c Q -  1]~} (4.22) 
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with [X~I > e  ~(~ ml)/2. We call the corresponding terms in (4.23) S~ and 
$2 ,  respectively. 

Clearly, 

$2  ~ ~, ~ P(A(X1)) 
m l < 0  IXII >elt(a ml)/2 

Z 2 4Re--(R+m')Z/zeZ (4.24) 
ml < 0 R > ell(a ml)/2/2 

Now R > e ~Ca- ml)/2/2 implies R + m 1 > 0 (for fl large enough) and so we get 

I (m'+e~{amt'/2/2)2-] 
S~ ~< ~ 2~/,/o ,.,,,,2 exp - 2e 2 j 

m l < 0  

~<Cexp [ (efl(6+1)/2--1)2 1 
- 2s 2 (4.25) 

Finally, the term S~- is estimated along the same lines as S~-, the only 
difference being that 6 is replaced by ( 5 - m l ) / 2 ,  and ml is of course 
summed only over negative values. Looking at (4.22), we see that therefore 
we get 

S t ~ C ~ ~ ~ 4 {/~/4)(a-m')~' l ( l  --0~)exp[fl(A 1)] 
i = 2  m l < 0  d>~t--1 

~ "  { - A  + m  I + ( f l /4 ) (6 -ml )  ~ i - , ( ,  _ ~ ) e x p [ f l ( d  - 1 ) ]  }2) 
x exp 2g 2 

(4.26) 

The presence of the -flm; term in the exponent allows us to perform the 
sum over the negative m 1 without a problem. We get 

S~- ~<C' e x p { -  [ - 2  + (fl/4)(~5 +2e 21) ~i--1(1 -- 0{)] 2} (4.27) 

Collecting the terms from (4.19), (4.22), (4.25), and (4.27), we have 

p(I( H)> 5) ~ C exp I _ (5(1-~176 ~ 

if 5 > e, for some constant c. This proves Lemma 4,1. | 

(4.28) 
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At this point we may use Lemma 3.2 from the last section to obtain 
immediately the analogue of Proposition 3.1 for the case/~ finite. Now the 
proof of Theorem 1.1 proceeds in exactly the same fashion as in the case 
~q = 0% using the partition of unity (4.7) and making similar computations 
as in formulas (4.14)-(4.28). | 
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